

Scopes & NameSpaces

Object : In general, anything that can be assigned to a variable in Python is referred to as an object. Strings, Integers, Floats,

Lists, Functions, Module etc. are all objects.

Namespaces : A namespace is a collection of currently defined names along with information about the object that the

name references. It ensures that names are unique and won’t lead to any conflict.

def greet_1 () :

 a = "Hello"

 print (a)

 print (id (a))

def greet_2 () :

 a = "Hey"

 print (a)

 print (id (a))

print ("Namespace - 1")

greet_1 ()

print ("Namespace - 2")

greet_2 ()

Output is:

Namespace - 1

Hello

140639382368176

Namespace - 2

Hey

140639382570608

Types of namespaces :

Built-in Namespace : Created when we start executing a Python program and exists as long as the program is running. This

is the reason that built-in functions like id() , print() etc. are always available to us from any part of the program.

Global Namespace : This namespace includes all names defined directly in a module (outside of all functions). It is created

when the module is loaded, and it lasts until the program ends.

Local Namespace : Modules can have various functions and classes. A new local namespace is created when a function is

called, which lasts until the function returns.

Scope of a Name :

In Python, the scope of a name refers to where it can be used. The name is searched for in the local, global, and built-in

namespaces in that order.

Global variables : In Python, a variable defined outside of all functions is known as a global variable. This variable name will

be part of Global Namespace.

x = "Global Variable"

print (x) # Global Variable

def foo () :

 print (x) # Global Variable

foo ()

Local Variables : In Python, a variable defined inside a function is a local variable. This variable name will be part of the

Local Namespace.

def foo () :

 x = "Local Variable"

 print (x) # Local Variable

foo ()

print (x) # NameError: name 'x' is not defined

Local Variables & Global Variables :

x = "Global Variable"

def foo () :

 x = "Local Variable"

 print (x)

print (x)

foo ()

print (x)

Output is:

Global Variable

Local Variable

Global Variable

Modifying Global Variables : global keyword is used to define a name to refer to the value in Global Namespace.

x = "Global Variable"

def foo () :

 global x

 x = "Global Change"

 print (x)

print (x)

foo ()

print (x)

Output is:

Global Variable

Global Change

Global Change

Python Standard Library

The collection of predefined utilities is referred as the Python Standard Library. All these functionalities are organized into

different modules.

Module : In Python context, any file containing Python code is called a module.

Package : These modules are further organized into folders known as packages.

Importing module To use a functionality defined in a module we need to import that module in our program. :

import module_name

Importing from a Module We can import just a specific definition from a module. :

from math import factorial

print (factorial (5)) # 120

Aliasing Imports : We can also import a specific definition from a module and alias it.

from math import factorial as fact

print (fact (5)) # 120

Random module Randomness is useful in whenever uncertainty is required. :

Example Rolling a dice, flipping a coin, etc,. :

random module provides us utilities to create randomness.

Randint : randint() is a function in random module which returns a random integer in the given interval.

import random

random_integer = random . randint (1 , 10)

print (random_integer) # 8

Choice : choice() is a function in random module which returns a random element from the sequence.

import random

random_ele = random . choice (["A" , "B" , "C"])

print (random_ele) # B

Classes

Classes : Classes can be used to bundle related attributes and methods. To create a class, use the keyword class

class className :

 attributes

 methods

Self : self passed to method contains the object, which is an instance of class.

Special Method : In Python, a special method __init__ is used to assign values to attributes.

class Mobile :

 def __init__ (self , model) :

 self . model = model

Instance of Class : Syntax for creating an instance of class looks similar to function call. An instance of class is an Object.

class Mobile :

 def __init__ (self , model) :

 self . model = model

a = Cart()

Cart.update_flat_discount(25)

print (Cart . flat_discount) # 25

Static Method Usually, static methods are used to create utility functions which make more sense to be part of the class. :
@staticmethod decorator marks the method below it as a static method.

class Cart :

 @staticmethod

 def greet () :

 print ("Have a Great Shopping") # Have a Great Shopping

Cart . greet ()

Instance Methods Class Methods Methods

self as parameter cls as parameter No cls or self as parameters

No decorator required Need decorator @classmethod Need decorator @staticmethod

Can be accessed through object(instance of class) Can be accessed through class Can be accessed through class

OOPS

OOPS : Object-Oriented Programming System (OOPS) is a way of approaching, designing, developing software that is easy

to change.

Bundling Data : While modeling real-life objects with object oriented programming, we ensure to bundle related

information together to clearly separate information of different objects.

Encapsulation Bundling of related properties and actions together is called Encapsulation. Classes can be used to bundle :

related attributes and methods.

Inheritance : Inheritance is a mechanism by which a class inherits attributes and methods from another class. Prefer

modeling with inheritance when the classes have an IS-A relationship.

class Product :

 def __init__ (self , name) :

 self . name = name

 def display_product_details (self) :

 print ("Product: {}" . format (self . name)) # Product: TV

class ElectronicItem (Product) :

 pass

e = ElectronicItem ("TV")

e . display_product_details ()

Super Class & Sub Class :

Superclass cannot access the methods and attributes of the subclass.

The subclass automatically inherits all the attributes & methods from its superclass.

class Product :

 def __init__ (self , name) :

 pass

class Laptop (ElectronicItem) :

 pass

Inheritance & Composition :

Inheritance Composition

Car is a vehicle Car has a Tyre

Truck is a vehicle Order has a product

Errors & Exceptions

Errors & Exceptions : There are two major kinds of errors :

Syntax Errors

Exceptions

Syntax Errors : Syntax errors are parsing errors which occur when the code is not adhering to Python Syntax.

if True print ("Hello") # SyntaxError: invalid syntax

When there is a syntax error, the program will not execute even if that part of code is not used.

Exceptions : Errors detected during execution are called exceptions.

Division Example : Input given by the user is not within expected values.

def divide (a , b) :

 return a / b

divide (5 , 0)

Output is:

ZeroDivisionError : division by zero

Working With Exceptions :

Raising Exceptions :

raise ValueError ("Unexpected Value!!") # ValueError:Unexpected Value

def divide (x , y) :

 if y == 0 :

 raise ValueError ("Cannot divide by zero")

 return x / y

print (divide (10 , 0)) # ValueError: Cannot divide by zero

Handling Exceptions : Exceptions can be handled with try-except block. Whenever an exception occurs at some line in

try block, the execution stops at that line and jumps to except block.

try :

 # Write code that

 # might cause exceptions.

except :

 # The code to be run when

 # there is an exception.

def divide (x , y) :

 try :

 result = x / y

 except TypeError :

 return "Invalid input"

 return result

print (divide (10 , 5)) # 2.0

print (divide (10 , "a")) # Invalid input

Handling Specific Exceptions : We can specifically mention the name of exception to catch all exceptions of that specific

type.

try :

 # Write code that

 # might cause exceptions.

except Exception :

 # The code to be run when

 # there is an exception.

try :

 result = 5 / 0

 print (result)

except ZeroDivisionError :

 print ("Denominator can't be 0")

except :

 print ("Unhandled Exception")

Output is:

Denominator can't be 0

Handling Multiple Exceptions : We can write multiple exception blocks to handle different types of exceptions differently.

try :

 # Write code that

 # might cause exceptions.

except Exception1 :

 # The code to be run when

 # there is an exception.

except Exception2 :

 # The code to be run when

 # there is an exception.

try :

 result = 12 / "a"

 print (result)

except ZeroDivisionError :

 print ("Denominator can't be 0")

except ValueError :

 print ("Input should be an integer")

except :

 print ("Something went wrong")

Output is:

Denominator can't be 0

Working With Dates & Times

Datetime : Python has a built-in datetime module which provides convenient objects to work with dates and times.

import datetime

Datetime classes : Commonly used classes in the datetime module are :

1 . date class

2 . time class

3 . datetime class

4 . timedelta class

Representing Date : A date object can be used to represent any valid date (year, month and day).

import datetime

date_object = datetime . date (2022 , 12 , 17)

print (date_object) # 2022-12-17

Attributes of Date Object :

from datetime import date

date_object = date (2019 , 4 , 13)

print (date_object . year) # 2019

print (date_object . month) # 4

print (date_object . day) # 13

Today’s Date : Class method today() returns a date object with today’s date.

import datetime

date_object = datetime . date . today ()

print (date_object) # 2022-12-17

Representing Time : A time object can be used to represent any valid time (hours, minutes and seconds).

from datetime import time

time_object = time (11 , 34 , 56)

print (time_object) # 11:34:56

Attributes of Time Object :

from datetime import time

time_object = time (11 , 34 , 56)

date_object = datetime . strptime (date_string , "%d %B, %Y")

print (date_object) # 2018-11-28 00:00:00

