

Data Types in Python

In programming languages, every value or data has an associated type to it known as data type. Some commonly used
data types.

String A String is a stream of characters enclosed within quotes. :

"Hello World!"

1234

Integer : All the numbers (positive, negative and zero) without any fractional part come under Integers.

. . . - 3 , - 2 , - 1 , 0 , 1 , 2 , 3 , . . .

Float : Any number with a decimal point.

24.3 , 345.210 , - 321.86

Boolean : In a general sense, anything that can take one of two possible values is considered a Boolean. As per the Python
Syntax, True and False are considered as Boolean values.

True , False

Conditional Statements

Conditional Statement : Conditional Statement allows you to execute a block of code only when a specific condition is
True .

if True :

 print ("If Block")

 print ("Inside If")

Output is:

If Block

Inside If

If - Else Statement : When the If - Else conditional statement is used, the Else block of code executes if the condition is
False .

a = int (input ()) # -1

if a > 0 :

 print ("Positive")
else :

 print ("Not Positive")

Output is:

Not Positive

Nested Conditions : The conditional block inside another if/else conditional block is called as a nested conditional block.

if Condition A :

 if Condition B :

 block of code

else :

 block of code

if Condition A :

 block of code

else :

 if Condition B :

 block of code

Elif Statement Use the elif statement to have multiple conditional statements between if and else. The elif statement is :
optional.

if Condition A :

 block of code

elif Condition B :

 block of code

else :

 block of code

Identation :

1 . Space(s) in front of the conditional block is called indentation.
2 . Indentation(spacing) is used to identify the Conditional Blocks.
3 . Standard practice is to use four spaces for indentation.

Strings - working with strings

String Concatenation : Joining strings together is called string concatenation.

a = "Hello" + " " + "World"

print (a) # Hello World

String Repetition : * operator is used for repeating strings any number of times as required.

a = "$" * 10

print (a) # $$$$$$$$$$

Length of String : len() returns the number of characters in a given string.

username = input () # Ravi

length = len (username)

print (length) # 4

String Indexing : We can access an individual character in a string using their positions (which start from 0) . These
positions are also called index .

username = "Ravi"

first_letter = username [0]

print (first_letter) # R

String Slicing : Obtaining a part of a string is called string slicing. Start from the start_index and stops at the end_index .
(end_index is not included in the slice).

message = "Hi Ravi"

part = message [3 : 7]

print (part) # Ravi

Slicing to End : If end_index is not specified, slicing stops at the end of the string.

message = "Hi Ravi"

part = message [3 :]

print (part) # Ravi

Slicing from Start : If the start_index is not specified, the slicing starts from the index 0 .

message = "Hi Ravi"

part = message [: 2]

print (part) # Hi

Negative Indexing Use negative indexes to start the slice from the end of the string. :

b = "Hello, World!"

print (b [- 5 : - 2]) # orl

Reversing String Reverse the given string using the extended slice operator. :

txt = "Hello World"

txt = txt [: : - 1]

print (txt) # dlroW olleH

Membership check-in strings :

in : By using the in operator, one can determine if a value is present in a sequence or not.

language = "Python"

result = "P" in language

print (result) # True

not in : By using the, not in operator, one can determine if a value is not present in a sequence or not.

language = "Python"

result = "P" not in language

print (result) # False

Calculations in Python

Addition : Addition is denoted by + sign.

print (2 + 5) # 7

print (1 + 1.5) # 2.5

Subtraction : Subtraction is denoted by - sign.

print (5 - 2) # 3

Multiplication : Multiplication is denoted by * sign.

print (2 * 5) # 10

print (5 * 0.5) # 2.5

Division Division is denoted by : / sign.

print (80 / 5) # 16.0

Modulus : To find the remainder, we use the Modulus operator % .

print (7 % 2) # 1

Exponent To find : a power b , we use Exponent Operator ** .

print (7 ** 2) # 49

Floor division To find an integral part of the quotient we use Floor Division Operator : // .

print (13 // 5) # 2

Input and Output Basics

Take Input From User : input() allows flexibility to take input from the user. Reads a line of input as a string.

username = input () # Ajay

Printing the Output : print() function prints the message to the screen or any other standard output device.

print (username) # Ajay

Comments : Comment starts with a hash # . It can be written in its own line next to a statement of code.

This is a comment

String Methods

Name Syntax Usage

isdigit() str.isdigit() Gives True if all the characters are digits. Otherwise, False.

strip() str.strip() Removes all the leading and trailing spaces from a string.

strip() with

separator

str.strip(separator) We can also specify separator(string) that need to be

removed.

replace() str.replace(old, new) Gives a new string after replacing all the occurrences of the

old substring with the new substring.

startswith() str_var.startswith(value) Gives True if the string starts with the specified value.

Otherwise, False.

endswith() str.endswith(value) Gives True if the string ends with the specified value.

Otherwise, False.

upper() str.upper() Gives a new string by converting each character of the given

string to uppercase.

Name Syntax Usage

lower() str.lower() Gives a new string by converting each character of the given

string to lowercase.

split() str.split() The split() method splits a string into a list.

split() with

separator

str.split(separator,

maxsplit)

Specifies the separator to use when splitting the string. By

default any whitespace is a separator.

join() str.join(iterable) The join() method takes all items in an iterable and joins them

into one string.

String Formatting : String Formatting simplifies the concatenation. It increases the readability of code and type conversion
is not required.

Add Placeholders : Add placeholders {} where the string needs to be formatted.

name = "Raju"

age = 10

msg = "Hi {}. You are {} years old."

print (msg . format (name , age)) # Hi Raju. You are 10 years old.

Numbering Placeholders : Numbering placeholders, will fill values according to the position of arguments.

name = input () # Raju

age = int (input ()) # 10

msg = "Hi {1}. You are {0} years old."

print (msg . format (name , age)) # Hi 10. You are Raju years old.

Naming Placeholder : Naming placeholders will fill values according to the keyword arguments.

name = input () # Raju

age = int (input ()) # 10

msg = "Hi {name}. You are {age} years old."

print (msg . format (age = age , name = name)) # Hi Raju. You are 10 years old.

Relational & Logical Operators

Relational Operators are used to comparing values. Gives True or False as the result of a comparison.

Operator Name Example Output

> Is greater than print(2 > 1) True

< Is less than print(5 < 10) True

== Is equal to print(3 == 4) False

<= Is less than or equal to print(2 <= 1) False

>= Is greater than or equal to print(2 >= 1) True

!= Is not equal to print(2 != 1) True

Logical operators are used to performing logical operations on Boolean values. Gives True or False as a result.

Name Code Output

and print((5 < 10) and (1 < 2)) True

or print((5 < 10) or (2 < 2)) True

not print(not (2 < 3)) False

Logical Operators Truth Table :

A B A and B

True True True

True False False

False False False

False True False

A B A or B

True True True

True False True

False False False

False True True

A Not A

True False

False True

